Search results for "Kerr metric"
showing 10 items of 13 documents
On the Uniqueness of the Energy and Momenta of an Asymptotically Minkowskian Space-Time: The Case of the Schwarzschild Metric
2013
Some theorems about the uniqueness of the energy of asymptotically Minkowskian spaces are recalled. The suitability of almost everywhere Gauss coordinates to define some kind of physical energy in these spaces is commented. Schwarzschild metric, when its source radius is larger than the Schwarzschild radius and in the case of a black hole, is considered. In both cases, by using a specific almost everywhere Gaussian coordinate system, a vanishing energy results. We explain why this result is not in contradiction with the quoted theorems. Finally we conclude that this metric is a particular case of what we have called elsewhere a creatable universe.
Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole
2020
All authors: Psaltis, Dimitrios; Medeiros, Lia; Christian, Pierre; Özel, Feryal; Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca; Ball, David; Baloković, Mislav; Barrett, John; Bintley, Dan; Blackburn, Lindy; Boland, Wilfred; Bower, Geoffrey C.; Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke Broguiere, Dominique; Bronzwaer, Thomas; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chan, Chi-kwan; Chatterjee, Shami; Chatterjee, Koushik; Chen, Ming-Tang; Chen, Yongjun; Cho, Ilje; Conway, John E.; Cordes, James M.; Crew, Geoffrey B.; Cui, Yuzhu; Davelaar, Jordy; De Laurentis, Mariafelicia; Deane, Roger; Dempsey, Jessica; Desvign…
Quantum Gravity Effects in the Kerr Spacetime
2010
We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within Quantum Einstein Gravity (QEG). In particular we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space avilable for the Penrose process. The positivity properties of the effective vacuum energy momentum tensor are also discussed and the "dressing" of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical f…
Spacetime Foam Model of the Schwarzschild Horizon
2003
We consider a spacetime foam model of the Schwarzschild horizon, where the horizon consists of Planck size black holes. According to our model the entropy of the Schwarzschild black hole is proportional to the area of its event horizon. It is possible to express geometrical arguments to the effect that the constant of proportionality is, in natural units, equal to one quarter.
Numerical study of the Kerr solution in rotating coordinates
2016
International audience; The Kerr solution in coordinates corotating with the horizon is studied as a testbed for a spacetime with a helical Killing vector in the Ernst picture. The solution is numerically constructed by solving the Ernst equation with a spectral method and a Newton iteration. We discuss convergence of the iteration for several initial iterates and different values of the Kerr parameters.
An intrinsic characterization of the Kerr metric
2009
We give the necessary and sufficient (local) conditions for a metric tensor to be the Kerr solution. These conditions exclusively involve explicit concomitants of the Riemann tensor.
Flat synchronizations in spherically symmetric space-times
2010
It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-Lemaitre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.
An intrinsic characterization of the Schwarzschild metric
1998
An intrinsic algorithm that exclusively involves conditions on the metric tensor and its differential concomitants is presented to identify every type-D static vacuum solution. In particular, the necessary and sufficient explicit and intrinsic conditions are given for a Lorentzian metric to be the Schwarzschild solution.
Semiclassical zero-temperature corrections to Schwarzschild spacetime and holography
2005
Motivated by the quest for black holes in AdS braneworlds, and in particular by the holographic conjecture relating 5D classical bulk solutions with 4D quantum corrected ones, we numerically solve the semiclassical Einstein equations (backreaction equations) with matter fields in the (zero temperature) Boulware vacuum state. In the absence of an exact analytical expression for in four dimensions we work within the s-wave approximation. Our results show that the quantum corrected solution is very similar to Schwarzschild till very close to the horizon, but then a bouncing surface for the radial function appears which prevents the formation of an event horizon. We also analyze the behavior of…
Stability of the intrinsic energy vanishing in the Schwarzschild metric under a slow rotation
2014
The linearized Kerr metric is considered and put in some Gauss coordinates which are further {\em intrinsic} ones. The linear and angular 4-momenta of this metric are calculated in these coordinates and the resulting value is just zero. Thus, the global vanishing previously found for the Schwarzschild metric remains linearly stable under slow rotational perturbations of this metric.